Efficient identification of identical-by-descent status in pedigrees with many untyped individuals
نویسندگان
چکیده
MOTIVATION Inference of identical-by-descent (IBD) probabilities is the key in family-based linkage analysis. Using high-density single nucleotide polymorphism (SNP) markers, one can almost always infer haplotype configurations of each member in a family given all individuals being typed. Consequently, the IBD status can be obtained directly from haplotype configurations. However, in reality, many family members are not typed due to practical reasons. The problem of IBD/haplotype inference is much harder when treating untyped individuals as missing. RESULTS We present a novel hidden Markov model (HMM) approach to infer the IBD status in a pedigree with many untyped members using high-density SNP markers. We introduce the concept of inheritance-generating function, defined for any pair of alleles in a descent graph based on a pedigree structure. We derive a recursive formula for efficient calculation of the inheritance-generating function. By aggregating all possible inheritance patterns via an explicit representation of the number and lengths of all possible paths between two alleles, the inheritance-generating function provides a convenient way to theoretically derive the transition probabilities of the HMM. We further extend the basic HMM to incorporate population linkage disequilibrium (LD). Pedigree-wise IBD sharing can be constructed based on pair-wise IBD relationships. Compared with traditional approaches for linkage analysis, our new model can efficiently infer IBD status without enumerating all possible genotypes and transmission patterns of untyped members in a family. Our approach can be reliably applied on large pedigrees with many untyped members, and the inferred IBD status can be used for non-parametric genome-wide linkage analysis. AVAILABILITY The algorithm is implemented in Matlab and is freely available upon request. SUPPLEMENTARY INFORMATION Supplementary data are available on Bioinformatics online.
منابع مشابه
Estimating the power of variance component linkage analysis in large pedigrees.
Variance component linkage analysis is commonly used to map quantitative trait loci (QTLs) in general pedigrees. Large pedigrees are especially attractive for these studies because they provide greater power per genotyped individual than small pedigrees. We propose accurate and computationally efficient methods to calculate the analytical power of variance component linkage analysis that can ac...
متن کاملIdentity-by-descent filtering as a tool for the identification of disease alleles in exome sequence data from distant relatives
Large-scale, deep resequencing may be the next logical step in the genetic investigation of common complex diseases. Because each individual is likely to carry many thousands of variants, the identification of causal alleles requires an efficient strategy to reduce the number of candidate variants. Under many genetic models, causal alleles can be expected to reside within identity-by-descent (I...
متن کاملApproximating identity-by-descent matrices using multiple haplotype configurations on pedigrees.
Identity-by-descent (IBD) matrix calculation is an important step in quantitative trait loci (QTL) analysis using variance component models. To calculate IBD matrices efficiently for large pedigrees with large numbers of loci, an approximation method based on the reconstruction of haplotype configurations for the pedigrees is proposed. The method uses a subset of haplotype configurations with h...
متن کاملEstimation of conditional multilocus gene identity among relatives
GeneticAnalysis Workshop identi ed ve key factors contributing to the resolutionof the genetic factors a ecting complex traits These in clude analysis with multipoint methods use of extended pedigrees and selective sampling of pedigrees By sampling the a ected individuals in an extended pedigree we obtain individualswho have an increasedprob ability of sharing genes identical by descent IBD at ...
متن کاملImproving pedigree-based linkage analysis by estimating coancestry among families.
We present a method for improving the power of linkage analysis by detecting chromosome segments shared identical by descent (IBD) by individuals not known to be related. Existing Markov chain Monte Carlo methods sample descent patterns on pedigrees conditional on observed marker data. These patterns can be stored as IBD graphs, which express shared ancestry only, rather than specific family r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 26 شماره
صفحات -
تاریخ انتشار 2010